skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garnett, Jess"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Liquid–solid diffusion couples (LSDCs) are employed to generate a composition gradient in the single‐phase hexagonal closed‐packed (hcp) solid solution with compositions up to the solubility limit of various solutes in Mg. Nanoindentation scanning across the composition gradient in LSDCs allows effective evaluation of composition‐dependent hardness of eight alloying elements (Al, Ca, Ce, Gd, Li, Sn, Y, and Zn) in the hcp Mg phase. The hardening coefficients, an indicator of the potency of solid‐solution hardening, are evaluated from the measured composition‐hardness data and correlated with various materials properties such as atomic radius, shear modulus, and elastic modulus of the solutes. The rank of hardening potency of Al, Gd, Sn, Y, and Zn measured by nanoindentation is in good agreement with that measured by microindentation reported in the literature. The hardening coefficient (potency) from the strongest to the weakest is Ce > Ca > Y ≈ Gd > Zn > Al ≈ Sn > Li in Mg‐based hcp binary solid solutions. The hardening coefficient is found to be closely correlated with the strengthening potency. 
    more » « less